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Prospects for Nearby Core-Collapse Supernovae TAUP 2013, Monterey

Prospects for Nearby Core-Collapse
Supernovae
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LIGO and the Advanced Detector Era TAUP 2013, Monterey

The Advanced Detector Network
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How to detect GW from CCSNe

TAUP 2013, Monterey

Challenges in Detecting CCSNe

Low event rate for

aLIGO.

*  Duty cycle not optimal.

*  Non-Gaussian and non-
stationary detector
noise.

Can’t predict exact GW
signal expected
robustly.
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How to detect GW from CCSNe TAUP 2013, Monterey

The Excess-Power Search

Uses time-frequency signal 2000

content.

Optimal for unmodelled
signals.

Does data contains excess-
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Increase accuracy by reducing
“on-source’ region (OSR).
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X-Pipeline (Sutton+09) and

Coherent WaveBurst
(Klimenko-+08).
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Multi-Messenger Searches for CCSNe TAUP 2013, Monterey

Utilizing Multi-Messenger Observations

Optical, X-Ray,
Gamma Ray, Radig
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Multi-Messenger Searches for CCSNe TAUP 2013, Monterey

GW Searches for CCSNe so far

Linear Q=2
sine-Gaussian

Elliptical Q=9
sine-(Gaussian

e

Linear
Ring-down

Circular
Ring-down

Band-limited
white noise

Frequenc;}r [Hz] Abadie+12, PRD 122007, 85
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Multi-Messenger Searches for CCSNe TAUP 2013, Monterey
A Joint GW-V Search for CCSNe

Core collapse sensitivity Additional region probed

Galaxy Edge 2 by coincident neutrinos
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* Collaboration with

IceCube/LVD/
Borexino.
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operate both
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detection threshold.
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Prospects for Astrophysics with aLIGO TAUP 2013, Monterey

Detecting CCSNe with aLIGO

P~y
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*  Unlikely to detect % Non-detections * Sub-threshold signals in GW
average CCSNe make statements and neutrinos - combine to
beyond Milky about increase observational

Way /LMC/SMC. progenitors. evidence.
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Prospects for Astrophysics with aLIGO TAUP 2013, Monterey

Utilizing sub-threshold GW /v signals
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Parameter Estimation for CCSNe TAUP 2013, Monterey

Parameter Estimation for CCSNe
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*  Want
astrophysically
interesting
information from
observations.
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* Don’t have exact

analytical — Magnetorotational mechanism

] — Neutrino mechanism
expressions - — Acoustic mechanism

Principal
Component
Analysis (PCA)

c.aptures dominant ¥ Reconstruct low SNR % Determine CCSN
signal features. signals. explosion mechanism.
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Parameter Estimation for CCSNe TAUP 2013, Monterey

PCA and Bayesian Inference

PCA - create basis sets encompassing ﬁ\ WW

‘principal components” of simulation
waveform space.

Rover+09

Generate PCs from time-domain, linearly |

polarized waveforms. /\\ f/mw

Bayesian Inference with Nested Sampling
algorithm. —— \AJ\NM

* PE: Estimate PC coefficients and
reconstruct injected signals using PCs

_ p(d|9> H)p(9|H)

Evidence
likely given observed data?
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Parameter Estimation for CCSNe TAUP 2013, Monterey

Inferring the Differential Rotation of CCSN
Progenitors

Ernazar Abdikamalov, Sarah Gossan, Alexandra DeMaio, Christian Ott

* Characterize progenitor 3 L B S S B s B
rotation for rotating core- B Q(w) — Q. {1 n ( w

collapse sources.

Optimal-orientation and
source at 10kpc - Only A and

Pic b unknown.
* Two approaches

*  Model selection.

*  Numerical template bank.
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Parameter Estimation for CCSNe TAUP 2013, Monterey

Determining A with Model Selection
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Parameter Estimation for CCSNe TAUP 2013, Monterey

A Numerical Template Bank -
Matched Filtering
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Future Work TAUP 2013, Monterey

Future Work

* Prepare for the first detection of GW from CCSNe!
*  More collaboration between GW and v working groups.

Low-latency burst pipelines.

x
* Real-time signal analysis.
9‘(.

Extend differential rotation analysis to additional
physical progenitor parameters, e.g.different explosion
mechanisms, equation of state.

* Inference analysis for both GW and v signatures of CCSNe.
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